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In this paper we study relations between moduli of smoothness with the
step-weight function ¢ and the best approximation by splines with knots uniformly
distributed according to the measure with density 1/@(x). The direct and converse
results are obtained for a class of step-weight functions, containing ¢(x)=

x(1 —x); it is well known that the modulus of smoothness corresponding to this
¢ is related to the best polynomial approximation. As a consequence, we obtain
relations between the best polynomial and spline approximations.  © 1999 Academic Press

1. INTRODUCTION

The aim of this paper is to establish a relationship between the moduli
of smoothness with variable step function and approximation by spline
spaces with suitable knots. We consider the class of moduli of smoothness
on =0, 1] corresponding to step-weight functions ¢(x) ~ x#@(1 — x)#D),
This class contains the important step-weight function ¢(x)=./x(1—x).
The modulus of smoothness with this particular ¢ appears naturally in
the characterization of the best polynomial approximation in L?(I) (see
[8, Chapter 7]). It appears as well in the characterization of the order of
approximation by Bernstein, Kantorovich, and Durrmeyer operators
(which are positive polynomial operators).

In this paper we relate the modulus of smoothness of order m with the
step-weight function ¢ to the order of approximation by splines of degree
m (i.e., of order m + 1) with the simple knots uniformly distributed according
to the measure with density 1/¢(x). The direct and converse results
are obtained (Theorems 4.3 and 4.4); moreover, it is shown that the
orthogonal projections onto the spline spaces under consideration give
the best order of approximation in all the L?(/) norms. Analogous results
are proved for some local positive spline operators.
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It should be noted that for ¢(x)=1 (corresponding to S(0)=p(1)=0)
we obtain classical moduli of smoothness in L? norm, and their relation
with the order of approximation by spline functions with dyadic knots was
studied earlier by Ciesielski (see for example [2]).

The case of ¢(x)=./x(1—x) is discussed in detail in the last section. It
is well known that the corresponding knots are extreme points of
Tchebyshev polynomials of the first kind. The results of Theorems 4.3 and
4.4, combined with the direct and converse results for the best polynomial
approximation, give Marchaud type inequalities between the best polyno-
mial and spline approximations (see Corollary 5.1). Consequently, we get
the same order of best approximation by polynomials and appropriate
splines for the generalized Holder classes. We should mention that spline
spaces with knots close to the extreme points of the Tchebyshev polyno-
mials mentioned above appear in [5] in the proof of the equivalence of the
K-functional and the modulus of smoothness corresponding to ¢.

The paper is organized as follows. In Section 2 we recall the definition and
main properties of the moduli of smoothness with variable step function.
In Section 3 we describe the spline spaces and operators under considera-
tion. Section 4 contains the results for general o(x) ~ x#®(1 —x)? and in
Section 5 the case of ¢(x)=./x(1 —Xx) is discussed in detail.

To shorten the notation, the following abbreviations are used. For
a,be R, we write a v b=max(a, b), a A b=min(a, b) and a ~ b if there are
two constants ¢;, ¢, >0 such that ¢;a <b <c,a. The Lebesgue measure of
the set A is denoted by |A|. Moreover, by C we denote a constant, the
value of which may vary from line to line.

2. WEIGHTED MODULI OF SMOOTHNESS

Denote I=[0,1]; for 1<p<oo, L?(I) is the space of real-valued
functions defined on I, integrable with pth power, with the usual norm
I171,=(o 1 f(x)|?dx)"?; by C(I) we denote the space of continuous
functions on /, with the usual supremum norm.

Let us recall the concept of weighted moduli of smoothness (for more
details see [8]). For fiI—> R, meN and he R denote by A7 f(x) the
symmetric difference of f of order m with the step 4, i.e.,

A7 f(x) = i (—1)i<7>f’(x+mh/2—ih),

with the convention that A7 f(x)=0 if x +mh/2 ¢ 1.
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We are interested in the moduli of smoothness with the step of the dif-
ference depending on the point. Let ¢: I — [0, o0); the function ¢ is called
an admissible step-weight function if it satisfies the following conditions.

I. ¢ is measurable and ¢ ~ 1 locally, i.e., for any proper subinterval
[a,b]<(0,1) there is a constant C such that 1/C<¢(x)<C for all
xela,b].

II. There are numbers f(0), (1) =0 such that

P(x)~xP9 as x—-0 and  @(x)~(1—x)f D as x-1.

III. There are C, and /4, such that for 0 </i<h, and every finite
interval Ec/

{x:xthe(x)eE, xel}|<C,|E|

Condition IIT guarantees the continuity of the modulus of smoothness as
a functional over L?(I); if f(0) <0 or (1) <0 in II, then condition III is
not satisfied. For the detailed discussion of conditions I-III, see [ 8].

Let ¢ be an admissible step-weight function. Then for f:7— R the
modulus of smoothness of f of order m and with the step-weight ¢ in the
L?(I) norm is defined as

0l (fit)y= sup |47 fl,.

0<h<t

Now, we list the properties of the modulus of smoothness wg’f;( £, t), which
are needed later on. The first of these properties is the equivalence of the
modulus of smoothness co((;:’},( f,t) and the appropriate K-functional. The
K-functional under consideration is

K9 (f, 1) =inf{ || f—gll, + " @™ - g ,: g W7 (I)},
with

Wy () ={ge L"(I)nACR7(D): o™ - g™, < o0},

loc

where AC7'7!(I) is the space of functions with g”~! absolutely con-

tinuous on each subinterval of I, and for p = oo, L*([) is replaced by C([).
According to [8, Theorem 2.1.1], we have
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THEOREM 2.1. Let ¢ be an admissible step-weight function and let me N,
1 <p < 0 be given. Then there are C and t, such that for fe L?(I) (fe C(I)
in case p= )

1
fw<m)(f NDSKD(fL<ColM(fit)  for 0<1<t,.

Let 1 <p<oo, me N be given. The following properties of w™)(f, t) are
used frequently without further reference; their proofs can be found in
Chapter 4 of [8].

(2.1) Suppose that ¢,, ¢, are two admissible step-weight functions,
satisfying ¢(x) < C@,(x) for x € I. Then there are M and ¢, such that

wg'l‘}p(f, 1)< Mcoﬁ;;‘}p(f, t) for 0<t<t,.

In particular, if ¢,(x) ~ @,(x), then a)f;:")p(f, 1) ~cof;’2’,)p(f, 1) for 0<1<t,.
(2.2) There are C and ¢, such that

@ (f, ) < CA"om (f, 1) for 0<r<it<t,.
(2.3) There are C and ¢, such that for f'e W7 (I)
o (L)< Ct™ o™ f),  for 0<1<1,.
(2.4) There are C and ¢, such that
ol V()< ColM(fi1)  for 0<1<1,.
(2.5) Marchaud type inequality: There are C and ¢, such that

(m+1)
a)('")(f t) < fu

11, +j mdu> for 0<r<tq.

In particular, it follows from (2.4) and (2.5) that for O <a<m the
conditions " (f, 1) = O(1*) and ' ¥ V(f, 1) = O(1*) are equivalent.

3. SPLINE SPACES ASSOCIATED WITH ¢(x)

3.1. Knot Sequences and Their Properties

Let ¢ be an admissible step-weight function and let ,, , = {7, x, k€Y, ,},
for ne N, be the sequence of knots uniformly distributed in 7 with step 1/n
according to the measure with density 1/¢(x). More precisely, the set of
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indices Y, ,, is specified below, and for ke Y, ,, the point ¢, ; is defined as
the solution of an appropriate equation.

Case 1. 0<f(0), f(1)<1. Then

e dx k1 odx
Y, ,= 1, .. T =/
e {0’ ’ ,n}, jo p(x) n L @(x)

Case 1. 0<p(0)<1, f(1)>1. Then

bk dx k
Y, ,=10,1,2, .. — =
n, {’ 5 &~ }a j() (p(x) n
Case 11. f(0)=1, 0<p(1)<1. Then
Uodx k|
Y, =1 —2, —1,0!, S
o= bl s
Case 1V. p(0), (1) = 1. Then
L
n,0_2a
12 k
Y, ,=Z2 | A M k<o,
Lok (p(x) n
ok d. k
J Lt for k>0.
12 ¢(x) n

Moreover, let
Ykr,={keY, , k—1eY, }
Y, ,={keY} i k—1k+1eY} }.

For ke Y} , define
In,k:(tn,kfla tn,k)a )"n,kz |In,k| = Z‘n,k_ tn,kfl'

The condition ke Y, , means that the interval I, , does not touch the
boundary of /, and there is no singularity of ¢ at the endpoints of 7, ,.
In the sequel, we consider orthogonal projections onto the spaces of
spline functions of order m + 1 with the knots 7, , and we need the fact
that the LP-norms of these projections are uniformly bounded in n. Now,
we present some estimates for the ratios 4, /4, ; for the partitions =, ,
(see Proposition 3.1 below), which imply the requested bound for the

norms of the projections under consideration.
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ProOPOSITION 3.1. Let ¢ be an admissible step-weight function on I,
and let m, , be the associated knot sequence. Then there is a constant C,
depending only on ¢, such that

@<C&n,k for xel, ., keX},, (3.1)
)vn,k<C@ for xel, ., keX,,. (3.2)

Moreover, we have the following estimates for the ratio A, i /A, ;.

1. If p(0)# 1 B(1), then there are C and y such that

1 1 Jom,
— 7<
C (I+|k=1)

C+k—1)) for kleY*

n, >

nehn.

2. If p(0)=1=p(1), then there are C and q,,>1 with lim,,_, , q,=1
such that

1 bl
P ”<1 <Cq=! for k,leY¥,, nel.

n,l

3. If p(0)=1and f(1)#1, or f(0)#1 and B(1) =1, then there are C,
y and q,>1 with lim,, _, ,, q, =1 such that for all ne N and k,le Y},

1 1 /1
C k=1 S

=01 o [k — 1),

Proof. Let us consider the case 0 < f(0), f(1)<1. At first, let 0 <k <
(2/3) n. As @(x) ~x#O(1 —x)?D_ we have for these k’s

Jo\ V(1= 5(0)
s (2) (33)

which gives 4, | =1, 1 —1, o ~(1/n)"' =7 Denote

n,
1 1

u 1
F(u)zfo Sl =] o G(u) = F~\(u).

Clearly, G'(u)=¢(G(u)), so for k>1 and ((k—1)/n)a<u<(k/n)a we
have G'(u) ~ (k/n)PO@/1=FO) and by the mean value theorem

_1 1 BO)/(1—B(0))
D=tk — i 1—G<ka>—G<k a>~.<"> (34
n n n n
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Similarly, we check that for (1/3)n<k<n

1 — I\ B/ =) ) 1 /n—k 4+ 1\POA—=p1)
1—1, s~ and App~—o| — .
’ n ’ n n

(3.5)

The required bounds for the ratio 4, /4, ;, as well as inequalities (3.1) and
(3.2), follow from (3.3)—(3.5).

The other cases are treated analogously, so the details are omitted. ||

n, >

3.2. Spline Spaces and Projections

Let ¢ be an admissible step-weight function on [; for n, me N put
g = ke Y,k 1el, b ol —m .. ~1}.

Let {N{"?,ie Y} be the sequence of B-splines with the knots 7, ,, of
order m + 1, normalized in such a way that they form a partition of unity,
ie.,
Nﬁtr,n;Q)(t)=(tn,i+m+1_tn,i)[ln,ia e Z‘n,erinLl;(' _t),i] for leY;r’ng”
where [, ..., 5;; f] denotes the divided difference of order / of f, taken
at the points s, ..., s;, and the points ¢, ; for j¢ 1, , are given by the
following rule: if j¢ Y, , and j <0 (which can happen only if $(0)<1),
then ¢, ;=0, while if j¢ Y, , and j> 0 (which can occure only if (1) <1),
then 7, ;= 1.

Let us mention some of the properties of the functions N #’ (for details
see for example [1] or [11]).

(36) N;’,nz’ (p)(t) 203 Supp Nﬁzr,nt, ?) = [tn,ir tn,i+m+1]'

(3.7) On any subinterval I' =/, the functions N{"?® which are non-
trivial on /', are linearly independent over this interval.

(3.8) Xicym N:?(1)=1 for all 1€(0, 1).

(3.9) Let &, ;=[N 1=ty itms1—1n)/(m+1); then there is a
constant C> 0 such that for any sequence {a,,ic Y ")} and 1<p< o

Y aNO)

iex™
n o

1/p
C< Z én,i|ai|p> <
ieY(”"":ﬂ

P

1/p
<< Z én,i'ai|p> .
ieY('l'f'la
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(3.10) ForieY () let M =N:9 /|INJ:? |5 then

-1, .
d MﬁlmH_lw) if tn,i:"':tn,i+m:(),
. 9) _ 1, . B - B
EN;’,"I,(P)_ Mi‘m’ ” if Ly ig1= " _tn,i+m+l_la
M if,"f Lo —M ﬁ,',”,-?r L) otherwise.

Let

Fm2) = {f: f= Y aN"?, q, ER}.
ie Y(n"”zp
Moreover, let (™ ? =% ~L?(I) (note that if $(0), f(1)<1 then
dim £ ? =p+m and ?“”p"’) Fm?) for all p; if either f(0)>1 or
p(1) = 1 then the space &%) is of infinite dimension). Let P{™ "’) be the
orthogonal projection onto Fm ) and let 20 2)(x, y) be the Dirichlet
kernel of P ). 1t follows from the exponentlal estimates for 20 ?)(x, y)
(see Theorem 3.2 below) that the formula,

P = [ 20, ) () d, (3.11)

defines a bounded linear operator on L?(]) for all 1 <p < oc0; moreover, if
g is a polynomial of degree <m, then P g=g.

Let H=[h, i, jeY{)] be the inverse to the Gram matrix
G=[(N™? N?) i j€ Y™ Then
PO, y)= Y hy NTP(x) NTEO(p). (3.12)
i jer™

It was proved by de Boor (cf. [1]) that there are 0 <3<1 and C>0,
depending on m only, such that
Gli—Jl
h; ;| < C——. (3.13)
én,i ° én,j

(It should be noted that the special case of this result, for splines with
dyadic knots, was obtained earlier by Domsta in [9].)
This estimate and Proposition 3.1 imply the following theorem.

THEOREM 3.2. Let @ be an admissible step-weight function and me N.
Then there are no € N, C and 0 <0 <1 such that

gle—1i
|27 O, I SC————  for n=zng, xely, yel,,.

)”n,k \4 j'n,l (3 14)
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This estimate implies that there is a finite constant M such that for all p,
1<p< o0, and n=n,

[P, = [P LAD) = S5 | <M. (3.15)

Proof. The bound for the ratio 4, ,/4, ; from Proposition 3.1, (3.6),
and (3.9) implies that if 1, , csupp NU3?, then &, , ~ 4, . Inequality
(3.14) follows from the above mentioned bound for 4, ./4, ;, (3.6), (3.12),
and (3.13); clearly, it is sufficient to take any 6 such that 3<6<1. It
follows from (3.14) that there is a constant M, depending on ¢, such that
forall n=ny, and tel

. 1
I |g§lm,(ﬂ)(x, Hdx<M and J |«@£,m 21, »ldy <M,
o 0

which by the standard argument implies (3.15). ||

Other Spline Operators. Together with the projections P we con-
sider local positive spline operators and piecewise linear interpolating
operator.

For m,ne N put

LyOx, )= Y NTO(x) M 7(y) (3.16)
ieY(m)
and
1
L Of(x) = [ L4mO(x, p) f(y) dy. (3.17)
0

L2 f is well defined for fe L?(I), 1 <p< oo, and if f is a nonnegative
functlon then LU™?f(x) is nonnegatlve as well. Moreover, as B-splines
{N('" ?) leY(’")} form a partition of unity, we have L™ 1=1 and
fo /1 a’x 1 L0 9 f(x) dx. Thus L™ takes probability densities sup-
ported on [ into probability densmes and this property makes these
operators useful for nonparametric density estimation (cf. [4]).

PrOPOSITION 3.3. Let ¢ be an admissible step-weight function and m e N.
For neN and s,tel, let i, je Y} , be such that sel,; and tel, ;, and
define

— i li—jl<m,
L s, 1) = 2 h

0 if li—jl>m.
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Then there are a constant C and ny € N such that for n>ny and s, tel
L) (s, 1) < CI8™9)(s, 1). (3.18)
Moreover, for all 1 <p< oo
1Ly, = LY 9: LP(1) > ™2 | =1 (3.19)

Proof. Inequality (3.18) follows from formula (3.16) by arguments
analogous to the proof of inequality (3.14). Since #(™?) is symmetric,
nonnegative, and L™ ?1 =1, we get (3.19). |

Finally, let for ne N and f'e C(I), U'?’f be the piecewise linear function,

interpolating f at the knots =, ,,, ie.

UL(P)fe yﬁzl, (/))’ Uﬁf)f([n,k) = f(tn,k) for k € Yn, @

We are interested in the bounds for the orders of approximation by the
operators P L% and U'” in the terms of moduli of smoothness
with the step-weight function ¢. Note the differences between the operators
P @) [ @) and U PU™ ) reproduces polynomials of degree m, while
L™ ) reproduces only constant functions. Therefore, we can obtain the
bounds for the order of approximation by P in terms of moduli of
smoothness of order m + 1, and for the order of approximation by L{™ ),
in general, we can get only modulus of smoothness of order 1; however, for
the particular step-weight function ¢(x)=./x(1 —x) we are able to obtain
the bound for the order of approximation by L) in terms of modulus
of smoothness of order 2 (cf. Theorem 5.2). On the other hand, U'* is well
defined for continuous functions, but it reproduces linear functions and we
prove the bound for the order of approximation by U'* in terms of
modulus of smoothness of order 2.

4. WEIGHTED MODULI OF SMOOTHNESS AND
ORDERS OF APPROXIMATION

4.1. Order of Approximation by P{™

Lemma 4.1 (Jackson-Type Inequality for P™¢)). Let ¢ be an
admissible step-weight function and me N. Then there are finite constant C
and ny € N such that for all n=ny, 1 <p< oo and all fe W;’f;l(l)

C
I\f—Pﬁ,’”"”)f\lp<W lpm =t f e+ D, (4.1)
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Proof. Note that it is enough to prove inequality (4.1) for fe C™+1(1)
and 1 <p < oo, with the constant C independent of p.

Let us start with the case 0 < £(0), f(1) < 1; to simplify the notation, put
p(0)=po, p(1)=p,. In this case Y} ,={l,..,n}, and it follows from
inequalities (3.1) and (3.2) from Proposition 3.1 that

1
Zgo(x)~/1,,,k for 2<k<n—1, xel, ;. 4.2)

Moreover, we have

1 1/(1—By) 1 1/(1 =5y
ln,lzﬂ”n,l'\'(n) 5 1_ln,n—1:ln,n~<n> (43)

(cf. formulae (3.3)—(3.5) in the proof of Proposition 3.1).
For fe C™*+1(I) we get from Taylor’s formula

1
S = gULx)+ 100 W) dy,

where W, (x, y)=sgn(x—y)-(x—yp)"/(2m!) and g(f,-) is a polynomial
of degree m. As the operator P #) reproduces polynomials of degree <m,
we have

POS(x) = g0+ [ ) P 0

and consequently

1
J(x) =P Pf(x) = fo DWW (X, y) = P2 W, (-, 3))(x)) dy.
(44)

To calculate P ?(W,,(-,y))(x) note that for given y the function
W..(-,») is a polynomial of degree m on the intervals [0, y] and [ y, 1].
Since P %) reproduces polynomials of degree <m, we obtain by (3.11)

1 y
PO (W, (-, ))(x) = pl (x—=p)"+2 fo PIO(x, 1) W1, ) dt

1 1
— )2 [ 2O ) W, )
2m! v
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Using the first of these representations of P (W, (-, y))(x) for y <x and
the second one for y = x, we get from (4.4)
f P(m qﬂ)f R(m w)f T(m </’)f (4.5)

with
R0 f(x) = [ [ 7 D) 2 01— ) i dy,

T(m w)f j f f(m+1)( )j;(m "’)(x t)(t— y)"dt dy.

We present the proof of the bound for |T{™?f| ,; the appropriate bound
for |RY™?f], can be obtained in a similar way. Splitting the integral
defining 7™ ? f(x) (i.e., the integral over [ x, 1]) into sum of integrals over
[x, 1101, ., [x,1]1n[¢t, ., t,,_1]and [x,1]n 1, ;, and using again (for
velx,11n1, ) the fact that P{™% reproduces polynomials of degree
< m, we obtain the following decomposition of T\ ¢ f as

T Of =T+ T 0L + T2 f + T2,

where
1
(m (P)f J jf(m+1) ) ﬁ,m’(”)(X,l)(l—y)mdtdy,
t
j f(m+1) )7("‘ q))(x Z)( ) dldy
(m ) X Vi,
Tuli"f for 0<x<t,,_1
nn71<x<1,
jnlf f(m+l)( )](m (p)(x t)(l— )mdldy
(m @)
L for 0<X<tnla
a<x<l1,
T 9 f(x) = ") (x— yymdy  for 0<x<t,
0 for 1, <x<L

Each of the terms |77, (o)), i=0,1,2,3, is treated separately.

Let us start with the estimate of 1T "’)fH Denote a = [ du/p(u); by the
definition of ¢, ; we have j"f)n Udu/p(u) = a/n. Thus, using the integral Jensen’s
inequality (with the measure (n/a)(dy/@(y)) on [x, ¢, ,]) and (4.3) we get
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m tn,l tn,l m m dy P
\|T2,3¢’f\|§<fo <f LS D(0)] @(y)(y—x) > dx

@(y)
ap_l n, 1
(m+l) D p—1 _ pm
< [ o gt (= xm dy dx
a?~!
<4 j £ ()P p(p)P =y dy
n

1
< AT /fo)(pmﬂ)J | fm+D( |2

x@(y)P= 1t yPem= dy
CP
<Wj £ DI @(p)P D dy.
Now, we estimate || T, (’" ‘/’)fH Inequality (3.14) of Theorem 3.2 implies that
C
|20 9)(x, 1)) <T for x,tel,,
n, 1

Using this estimate, Jensen’s inequality (again with the measure
(nfa)(dy/e(y)) on [x, ¢, 1]) and (4.3) we obtain

TS IE < 5 R

x| D) @(y)?~ dy dx
Ccr

n?—!

<

tn,l
S0 Boem 1) L Phopm 1) ()P =1

X D)7 dy
Cp tn,l (m
<ogn | PR LS () d.

Let us estimate || Tﬁ,’,"()"’) f1l,- Applying Jensen’s inequality (with the measure
(n/a)(dy/p(y)) on [t,,_;,1]), inequality (3.14) from Theorem 3.2 and
(4.3) we get

1 )4
”T(m ¢)f“l’< = lj LVt <L |9’51'”"/’)(x, t)|(t—y)mdl>

X |2 @(p)P " dy dx
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<

[y

n,n—1

np—l I1=1 (;"n,l \4 /ln,n)p

x| [T D()|? o(y)? ' dy dx

p n p(n—1)
C 0 f
In,l

cr 1= (pm+1) ! Bi(pm+1) p—1
gnpflln,n ! . 1(1—}/)1 o(y)
X | £+ (p)|? dy

(624 1
<WJ P(p)P D | £ D(y)| P dy.
t

n,n—1

It remains to estimate |70 * /| ,. Introduce

0|k71|/2

k(x, t)=0%""2  p(x,t)=———  for xel,,, tel,,,
/Ln,k \4 /ln,l ’ ’
(4.6)
with 0 from Theorem 3.2. Then we can rewrite (3.14) as
|20 P(x, )] < Cpalx, 1) ky(X, 1), (4.7)
Moreover, let for 0<x<¢, ,_;
n,n—1

t 1
2 =" [ =k, 1) de dy.
XV, 1%y
Applying (4.7) and then the integral Jensen’s inequality (with the mea-
sure (1— y)"k,(x, t)dtdy/z(x) on the set {(¢,y):xVv i1, <y<t,, |
y<t<1}) we obtain

[ [ ey

XV, 1 vy

Ty s ="
n, 1 P 0

P

x PO (x, t)(t— y)"dt dy| dx

tn,n—l tn,n—l

<or [M et [ [ e

0 XV, vy

Xpn(xa I)P kn(xﬂ Z)(l_ y)m dt dy dx

tn,n—l
<cr [T g
t

n, 1

X <J‘Oy Jl Z(X)P—l pn(x’ z‘)P kn(x’ l‘)([* y)m dt dx> dy

¥y

(4.8)
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Let us start with the estimate of z(x). Let xel, ,. By the definition of

ky(x,t) (cf. (4.6)) and the estimates for the ratio 4, ,/4, ; as given in
Proposition 3.1 we get

n—1 n

<2 XM sk diy

I=k j=1"ti1-1" "t j-1

n—1 n

< Z Z ln, lln,j(ln,j‘l‘ +j‘n,l)m O(j_k)/z
I=k j=1
n—1 n
SC Y 2mp2U=RR N (14 (j—1))+mo+h gu=D2
=k j=1
n—1
oS (k- <y

I=k

Applying the last inequality, (4.6) and again the estimates for the ratio
n, i/ 7n, ; from Proposition 3.1, we obtain for yel, ,

jy jl 2(x)2" po(x, 1) ke (x, ) — y)™ di dx

0 “y
t, 1
<[ 2P p 07 kx4, )" i dx
0 iz,
«1+(p71)(m+2)i (}'n,j'i_ +/ln,l)m
( n,k \ j'n,j)p

< CP< Y Ao Dmen g(l—k)(p+l)/2>

k=1

QU —k)p+1)/2

! n
<cry v
k=1 j=1

n
<;Lm+1 Z )y +mr ) - l><p+1>/2>
<C1’lfl’f;"+l) Z (1+(l_k))y(p71)(m+1) g(lfk)(p+l>/2<CP;Lﬁ’(§n+l)‘
k=1

This inequality and (4.2) give for yel, , with 2</<n—1

p(m+1)

j j P ko, )t — yy di du < o0 2

np(m+1) B

which, together with inequality (4.8), implies

CP tn,n—l
HT(m ¢)pr< p(m+l)j (p(y)p(m+1) |f(m+l)(y)|p dy.

n,l
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The above estimates for HTﬁ,’f’; "’)pr, i=0,1,2, 3, imply

C
HTE’""”)préian lpm =t f oD,

with the constant C independent of p. Analogously we prove that

C
g | LA A P8

Thus, these inequalities and the decomposition (4.5) give

C
ILf = Pﬁ,’""”)f\lp<W lpm =t f e+,

which completes the proof in case 0 < f(0), f(1) < 1.

Let us discuss briefly the remaining cases. If 5(0), f(1) > 1, then we have
(I/n) @(x) ~ 2, for all ke Y} ,, xel,,, and the required estimate for
[T % f]|, can be obtained by the method similar to the one applied to
1o "’)fH If (0)>1 and p(1)<1, then (1/n) p(x)~ 4, , for k< —1,
xel, and it is enough to split the integral defining 7™ f(x) (over
[x,1]) into two parts: over [x,1]1n[0,7, ;] and [x,1]n [z, _;, 1],
and then treat the first part analogously to T;f”iw)ﬁ and the second part
analogously to 7% ?’f. In case (0) <1 and f(1)>1 we have (1/n) ¢(x)~
I for k=2, xel, ;, and then we split the integral defining 7™ f(x)
into two parts: The first part corresponding to integral over [x,1]n
[7,1,1] (which is treated analogously to 7U"%;?)f), and the second one
corresponding to integral over [x,1] N[0, ¢, 1] The second part is then
further decomposed (using the property of reproducing of polynomials by
P{™?)) into parts dndlogous to T ?fand TY32f.

Note that if f(0)=1or f(1)=1, ‘then n should be big enough to guaran-
tee that for ¢, from Proposmon 3.1 and 0 from Theorem 3.2 we have
q,-0<1. 1

LemMa 4.2. (Bernstein-Type Inequality). Let ¢ be an admissible
step-weight function and me N. Then there is a finite constant C such that
forn=1,1<I<m, 1<p<co, and fe S "?

lg"-fOll, < Cn" Il f1l- (49)

Moreover, there is a constant C such that for n>=1, 1<p<oo, and
fe y(m ?)

w§ V(. 9) < Cmin(1, (nd)"+V2) | £],. (4.10)
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Proof. Let fe ™7, f= Z,ey(m a;N (™. Using formulae (3.10) for

the derivatives of B-sphnes L?P- stablhty of B-splines (cf. (3.9)), inequality
(3.1) and the estimates of the ratio 4, ,/4, ; from Proposition 3.1, we get
for 1 </<m and for p< o

1/p
qo’-f‘”|p=< > | (¢(X)’~|f”)(X)|)"dx>

kexy, Ik
Ipylp+1 A AN
<c< S ity A,p)
keTy, ick—m—2 "nk
1/p
<ol 3 tuslal)
teY("'
<Cn' | fl,»

with C independent of p. Passing with p to infinity completes the proof of
(4.9).

To prove inequality (4.10), note that we can find constants A4, a, depending
on m and ¢ only, such that for 0 <h <a/n

Supp Z;Z;— lel"Tl; ?) < [[n, i—1> tn, i+m+2:|’ |Supp Z;zn(p+1N£1',n; ?) | < Anhén,i'
Moreover, it can be checked that for x e supp 47,7 N #
A3 50 N 2 ()] < Clnh)™.

Now, the calculations similar to the ones from the first part of the proof
give for 0 <h <a/n

1/p
V7 1< Com e (3 ale ) < Clhy e g,
iEY{rTlo
which implies (4.10). |
THEOREM 4.3. Let ¢ be an admissible step-weight function, me N and

1 <p < oo. Then there are finite constant C and ny € N such that for n > n,,
felL?(I)(feC(I) in case p=0)

n

1
|f— PO, < Cptrs D <ﬁ )
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Proof. Theorem 4.3 follows by standard arguments from Jackson type
inequality (cf. Lemma 4.1) and the equivalence of the K-functional with the
modulus of smoothness (cf. Theorem 2.1), with the help of the uniform (in
n) bounds for the norms of the projection P (cf. Theorem 3.2). The
details of the proof are omitted. |

For 1<p<oo, feL?(I) (feC(I) in case p=o0) and n > 1, introduce
the best approximation

E™o(f)=inf{|f—g|,: g€ S

Recall that P{™? is a projection on ™ #, and by Theorem 3.2 there are
M and n, such that [P, <M for n >n,. Therefore, for fe L?(I)
(feC(I) in case p=o00) and n>=n, we have

Eo/(f)< /= Pe2f |, < (M+1) ESo)(f ). (411)

THEOREM 4.4. Let @ be an admissible step-weight function, me N and
1 <p < 0. Then there are finite constant C and py € N such that for u = u,,
felL?(I) (feC) in case p= 0)

1
o, (£3:) < 3w (114 £ 2E5200 ) gor 1<t

i=p,
(m+1) 1 ¢ S (m+1/p)ip(m, @)
wq)p ﬁ? <2(m+1/p)/4 Hf”p+z 2 E2",,p (f) .
i=puy

Proof. Theorem 4.4 follows by standard arguments from Bernstein type
inequalities (4.9) and (4.10) (cf. Lemma 4.2), and the details of the proof
are omitted. |

As a consequence of Theorems 4.3 and 4.4 we get

THEOREM 4.5. Let ¢ be an admissible step-weight function, 1 <p < oo,
meN, 0<oa<m and fe LP(I) (fe C(I) in case p= o0). Then the following
conditions are equivalent.

(i) of"(f,0)=0(5%) as d - 0;
(i) EY?(f)=0(n"") as n— oo,

(iii) /=Py 21, =0(n"") as n— .
Moreover, for 0 <a<m+ 1/p, conditions (1) and (iil) are equivalent to

(iv) @+ (f,6)=0(5%) as 5 0.

These assertions remain valid when O is replaced by o.
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4.2. Order of Approximation by L™ ¢ and U'®

Lemma 4.6 (Jackson-Type Inequality for LU™?)). Let ¢ be an
admissible step-weight function and me N. Then there are finite constant C
and ny € N such that for n=ny, 1 <p<oo, and f € W;,(P(I)

C ’
1f =L 1, < el

Proof. The proof follows by the analogous ideas as the proof of Lemma 4.1
(with the use of the estimates for # ™ ¢)(s, 1) from Proposition 3.3). |

Using Lemma 4.6 and the same arguments which imply Theorem 4.3 we
obtain

THEOREM 4.7. Let @ be an admissible step-weight function, me N and
1 <p < 0. Then there are finite constant C and ny € N such that for n=n,
and fe L?(I) (fe C(I) in case p= o)

1
I~ Ll < o, (£7).

THEOREM 4.8. Let ¢ be an admissible step-weight function. Then there
are finite constant C and ny € N such that for n=nq, and f e C(I)

1
I~ U< CoR. (1)

Proof. 1t follows from the uniform (in #) bounds for the norms
| P (cf. Theorem 3.2) and |[U” |, =1 that

1f =P f oo ~ 1 f = UL S oo ~ E L)
and Theorem 4.8 is a consequence of Theorem 4.3. ||

As a consequence of Theorems 4.5, 4.7 and 4.8 we obtain

THEOREM 4.9. Let @ be an admissible step-weight function, 1 <p < oo,
meN, O<a<1 and feL?(I) (fe C(I) in case p= o0). Then the following
conditions are equivalent:
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(i) @l (f.0)=0(5%) as 5 -0,
(il) /=Ly ?fl,=O0(n"") as n— oo.
In addition, for p = oo the above conditions are equivalent to
(iii) /= U fw=0(n"") as n— .
The assertion is also valid when O is replaced by o.
Note that for f'e C(1)
UPf= % [l ) NSO
ker®h '
ne
and
U f=UPf= Y  cl/INGD,
ker) n2z
with
Cn il )= —Zamicsr  Aom vz [lom i tom ke 1s Lom k25 f1-
Thus we get from Theorem 4.9:
COROLLARY 4.10. Let ¢ be an admissible step-weight function and
0<a< 1. Then for fe C(I) the following conditions are equivalent:
(i) @@ (f.d)=0(5%) as § >0,

(i) sup,en Squer‘zln{(ﬂnzz n* e, ()| < oo.

5. SPLINES WITH TCHEBYSHEV KNOTS ON [0, 1]

In this section we consider spline spaces associated with one particular
step-weight function, namely ¢(x)=./x(1 —x). The modulus of smooth-
ness wgf’;,( f, t) gives the characterization of order of approximation by
algebraic polynomials. Denote by 77, the space of algebraic polynomials of
degree <mn, and for fe L?(I) (fe C(I) in case p=o0) introduce the best
polynomial approximation

6o ) f)=inf{ /=gl ,: gell,}.

It is known (see [8, Theorems 7.2.1 and 7.2.4]) that for any me N and
1 <p < o there is a constant C such that
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1
én,p(f)<wa,,,},<f,n> for n>m, (5.1)
(m) <C S (k+1)m-1 5.2
o, f\nf,,,Z + e, p(S)- (5.2)
k=0

The asymptotics of a)fp’f’;,( f,t) can be characterized by the order of
approximation by spline functions with knots uniformly distributed with
respect to the measure dx/@(x). For ¢(x)=./x(1 —x) we have

1 1 —k
Y, ,=10,..n} and Inx==+=¢ <(nn)n> for 0<k<n.

)
(5.3)
Note that
2% —1
/Inkzsin<n>sin<(k)n>, | <k<n, (5.4)
> 2n 2n
and
! < <3(1+1k—=1)) forall n>1, 1<k I<
7\ - T =1, XNy X/t
31+ k—1)) orat "

As a consequence of inequalities (5.1) and (5.2), and Theorems 4.3 and
4.4 we get

COROLLARY 5.1. Let ¢(x)=./x(1—x), meN and 1<p<oo. Then,
there are C and u, such that for u>u, and fe L?(I) (fe C(I) in case
p = o0) the following inequalities hold.

C u
(9@2;1 p(f) 2(m+1/m,u<|f|11+ Z 2(m+1/P)kE(2'k'i’I;P)(f)>’

k=p,

C H
ES () < oz ('f o+ X 2D e, (f ’)'

k=p,

Consequently, for 0 <a<m+1/p

6o p([)=0(n"") iff E2(f)=0(n"")

and

6o p(f)=0(n™) iff E7(f)=o0(n"").
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Finally, let us compare the order of approximation by positive spline
operators L' ?)fand the order of approximation by some positive polynomial
operators, namely Bernstein, Bernstein—Kantorovitch, and Bernstein—
Durrmeyer operators. Bernstein, Bernstein—Kantorovitch, and Bernstein—
Durrmeyer operators B,f, B} f, and D,f are defined by the respective
formulae

Byf(x)= 3 f<> By () for fe (),

(k+1)/(n+1)
| f(u)dub, (x) for feL”(I),

k=0 k/(n+1)

Duf(x)= Y (n+ 1) [ )byl dub, ) for feLA(D)

> x*(1 —x)"—*.

Let us mention some of the properties of the operators B} fand D, f:

1By fll,<|fll, and ID.fl,<Ifll, for feL”I), 1<p<oco,
fl B,;kf(x)abc:j1 D, f(x) dxzjl f(x)dx  for feL\I).
0 0 0

As B f and D, f are positive operators, this means that they take proba-
bility densities supported on [ into probability densities. This property
makes them useful for nonparametric density estimation (cf. for example

[3,4]).
It is known that for 0 <o <2 (cf. [8, Chapter 9]; see also [ 10, 12-13])

1f=Buflw=0n""2) iff @@ (f 1)=0(t"), (5.5)
If=B¥fll,=0n="2) iff @ (f1)=0(%), (5.6)

and (cf. [7])
If=Dufl,=0n="2) iff w@,(f,1)=0(). (5.7)
It follows from (5,5)—(5.7) and Theorem 4.9 that for 0 <a <1 and
1<p<oo the conditions |f—B}f|,=0n""), ||f—D,f|,=0n"""?)

and | f— L ?f|,=0(n"") are equivalent; in addition, for p = oo, they
are equivalent to | f— B, f ., = O(n~%?). To obtain analogous equivalence
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for 1 <a <2 we need more precise results on the order of approximation
by operators L™ ? f. We have the following

THEOREM 5.2. Let ¢p(x)=./x(1—x), me N and 1 <p < oo. Then there
is a constant C such that for ne N and f € W;, oA1)

C
If=Ly "’)fl\p<?(|\f\|p+ @ f"1,)- (5.8)

Consequently, there are constant C and ny € N such that for fe L?(I) and
nz=zngy

-2l <c (v, (1)), (59)

Remark. This result should be compared with the orders of approxima-
tion for the operators D, f'and B} f: Let 1 < p < oo; then there is a constant
C such that for fe L?(I) and ne N

1f=Dofl, < c('/;'uwgiz, <ﬁ 7))

- B,:*‘f|,,<c<”n'P+w5,,%)p <f, 1))

(cf. [7, Theorem 7.4] and [8, Theorem 9.3.27).

Proof of Theorem 5.2. The idea of the proof is analogous to the argu-
ment used for Jackson type inequalities for P % and L% (Lemmas 4.1
and 4.6), but now we must take into account that operators L do not
reproduce linear functions.

Let 1 <p < oo. By the density argument, it is enough to prove (5.8) for
fe C?*(I). For fe C*(I) we have

S(x)=f(0)- (1 —x)+ f(1) —J Ulx, y) f"(y) dy,
where U(x, y)=min(x, y)-min(1 —x, 1 — y). Denote Id(x) = x and A4(x)

=1d(x)— L™ “(Id)(x). As the operator L!™¢ reproduces constant
functions, we have

LU 2f(x) =£(0) + ((1) — £(0)) L™ #(Id)(x)
- Ll LY O(U(-, p)(x) f"(y) dy,
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and consequently
S(x) = L2 f(x) = (f(1) = f(0)) AT(x)

- fo " )(U(x, p) = L 2(U(-, y)(x)) dy.(5.10)

Note for given y the function U(-, y) is linear on [0, y] and [y, 1].
Therefore, by the definition of L (cf. (3.17)) we have

LGP (U p)() = (1= 2) = AL + [ (y =) 200 )

¥y

y
= (1 =X+ APC)) + | (= y) L 9x, u) du
0

Putting into (5.10) the first of these formulae for x < y <1 and the second
one for 0 < y <x we get

S(x) =L ?f(x) = f'(x) - AJ(x) = Ry f(x) = T f(x), (5.11)

where

R f(x)=|

0
1,1
TS = [ [ (=) 29, u) du f() dy.
x Yy
Introduce two auxiliary operators, R™ f and TUf, defined as

[, = 2w d () dy,

RMf(x)=0  for 0<x<t,,_i,

while for ¢, ,_; <x<1

Rf=[" (y=x) () dy

tn,n—l

x 1

—[ [ w0 @ ) du () dy,
tn,n—l y
and T f(x)=0 for ¢, ; <x<1, while for 0<x <1,

7901 = [ (e y) 170 dy

X

[ ) L ) du £ d.

x 0
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Using again the fact that L(™¢) reproduces constant functions and the
definition of 4™, we get for 7, ,_; <x<1

x ¥y

(y—u) L7, u) du f"(y) dy

tn,n—l 0
= AT (%) = [t 1)) + R f(x),
and for 0<x <1, ,

[ [ =) 22wy du 7 5) dy

= AT (%) = [ty ) + T f(x)

Now, define

S'(tn 1) for 0<x<t,,,
n f(x) =4 f'(x) for 7, <x<t,,_1,
Sty 1) for 7, ,_1<x<l,
R f(x)+ Ty f(1,,) + T f(x) for 0<x<t,,,
O f(x) =< RY f(x) + TY f(x) for 1, <x<t,._1,
R f(ty )+ R f(X)+ T f(x)  for 1, ,_<x<l.

By the previous calculations and the definitions of Q) fand 7 f(x), we
can rewrite formula (5.11) as

JxX)= L2 f(x) = f(x) - A7(x) = Q3 f(x). (5.12)

Applying the method used in the proof of Lemma 4.1, we check that there
is a finite constant C, independent of 1< p < co, such that for ne N and

few?
C
HQim)pr\;Hﬁﬂz'f"Hp- (5.13)

Therefore, it is sufficient to obtain the bound for || f(-) A!™(.)]
Applying the formulae (cf. [ 11, Chapter 4])

P

Mot iy
ld(x)= Y ==L Nme(y), (5.14)

ier™ m
n ¢
! "n—+1 tn i+j
L Id(x) M (™ 9(x) dx=z’_n27+2’+’ (5.15)
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(recall that 7, ;=0 for i<0 and ¢, ;=1 for i>n, cf. Section 3.2, while for
0 <i<n the point ¢, ; is given by formula (5.3)), we get

Zm+1 t
j=0 ‘n,i+j

L™ [d)(x) = N @)y ,
COd = 3 SN
n, @
and
A= Y wINTO(x),
iey™ ’ ’
n, e
where
1 m+1
(m) _ - el S A
M}n,t m(m+2) jgl (m ]+ )/“n,l+]

1 [(m+1)/2]
z (m*2j+2)(/1n,i+j*}m,i+m+2—j)~

:m(m+2) i<

It follows from formula (5.4) that |4, ,,;— A, i ms2_;l=0(n~?), and
moreover for i such that [n/2 —i[ > n/4 the differences 4, ;4 ;— 4 ivms2—
j=1,.,[(m+1)/2], have the same sign and |4, ; ;— 4, iy my2_;l ~n72
Therefore, the above formula for w(”) gives

Wi |=0(n=?) for ieY( and |[w|~n"> for |n/2—i|>n/4,
whence (cf. (3.9))
1Ay, ~n7%  1<p<oo. (5.16)

Now, we obtain the bound for ([ [#{™ f(x) AT"(x)|? dx)'?; the other
integral (], 7™ f(x) AJ(x)|? dx)"? can be treated analogously. Denote

1/2
VS b =4 Sy

A=

12
af)=4] (-
1/4
Integrating by parts we get a( /)= f"(3) — b(f); moreover, observe that

la(HI<Clig*-f"1 < Clo?-f"ll,
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and

b (f)|<4j 1)l dy

12 12
< c( J, o PN+ ] 17 dy)

1/4
<SCU S+ 1@ f"10) < CULN,+ llo® £ )-

Now we have

1y f(x) = (" f(x) = () +a(f) +b(f),

which, together with (5.16) and the above estimates for |a(f)| and |b(f)],
implies

1/p

([ s agmie )

< +1er 1+ ([ (s —r (3)) o] ac)”

(5.17)

Denote ¢ = p/(p—1); now we have for 0<x <1, 4

W1~ D=1 ()~ SN[ 1] dy

tn, 1

1/2 1/p 1/2 1/q
< <f YTl dy> < yq>
tn,l tn,l

< CnZ/p H§02 'f”

ll-

(It should be noted that the constant C in the last sequence of inequalities
depends on p.) As ¢, , = O(n~?) and [4(x)| = O(n~?), the last inequality

implies that
(s =7 (3) agmeo]”

(0

To estimate the integral over [#, ;, 5], let ' =[(n+1)/2]. It follows from
formula (5.4) that for 1 <k<n' we have A, ~k/n*> Therefore, using
inequality (3.2) from Proposition 3.1 and applying twice Jensen’s inequality
(at first, to (X7_,...)7, with weights i'/7/j' *'/7, and then to the integral over
(10 j—15tn 1, w1th the measure n dy/p(y)) we get

Vr )
dx> <5 M9 1", (5.18)
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o)
<f <j L )|dy>pdx
:Zﬂu (Z [ i)

ltnjl

n n b 1+1/p P
L (L[ (52) o)

Ay, j

N

N

n n 1 t ., P
Cn?~ I_Z Z<Z WL o) VP If (y)ldy>

= nj—1

o R Up | o dy \?
<Cn IZ Z ”“”(j,,,,»@(y)z Vp | f (y)lw(y)>

i=2 j=i
<c e e, 2p f” 7 d
Z Z 1+1/p o) [f ()P dy
i=2 j=i Ly, j—1

V2L (0)]2 dy.

(The constant C in the above sequence of inequalities depends again on p.)
As |4")(x)| = O(n—?), the above calculations imply

<j1/2 < IS <;>>Aim)(x)p

which, together with (5.17) and (5.18), gives

Vr
dx) <5 19?11,

1/p

([ s agoonnirax) < 111+ 107171,
The integral over [, 1] is treated analogously, so we get
g™ f- A, <n£2 LI+l f71,)-
This inequality, (5.12) and (5.13) imply that for 1 <p < co and fe C*(I)

C
| /=Ly 1], < 2 UL+ lp?-f"1,)
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where the constant C depends only on p. The density argument gives (5.8)
for all fe Wf,, S)

Finally, inequality (5.8) and the standard argument with the equivalence
of K-functional and modulus of smoothness (i.e., Theorem 2.1) imply

(59). 1

Remark. Repeating the above calculations for p=oco we obtain that
there is a constant C such that for fe Wﬁo, o)

Lf

I,  logn
2P + 2
n

I.f—LL'"’(”)floo<C< |<ﬂ2‘f”|w>, (5.19)

n

and consequently there is a constant C > 0 such that for f'e C([I)

1
r-oflac (e siogno, (1)) G20

Moreover, the factor log n appearing on the right-hand side of inequalities
(5.19) and (5.20) cannot be replaced by 1. To see this, consider the function
f(x)=x—xlog x; then f'e C(I), f"(x) = —1/x, which implies w'_ (£, 1/n)
=0(n"%). On the other hand, in the notation from the proof of
Theorem 5.2,

. log n
10, flo=0(n"%),  while [n{™fA],, Nng,

which gives

) m logn
=L f o~

ProrosiTiON 5.3. Let meN, 1<p< o, ¢(x)=./x(1—x). Then for
felL?(I) (feC() in case p=o0) and 0 <o <min(m+ 1/p, 2)

If =Ly fll,=0m™) iff wy,(f,d)=0(5).

Proof. For p< oo the result follows from Theorems 4.4 and 5.2.
To obtain the result for p = oo note that for xe (¢, 4, t, x4 1)

1
f (t—x)> L™ 9(x, 1) dt < C
0
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in the above calculations we use (5.15) and the formula (cf. [11,
Chapter 4])

2
f tM(m ?)t) dt = Y Lniv jln v

o<j<i<m+1

Note that |x— L 9(Id)(x)|=0(n"?) (cf. (5.16)); now, applying
Theorem 4.4 and Theorem 5.1 of [6] we get the result for p=o0. ||

(m+2)(m+3)

As a consequence of Proposition 5.3 and (5.5)—(5.7) we get

COROLLARY 5.4. Let meN, 1<p< o, @(x)=/x(1—x), felL?()
(feC(I) in case p=o0) and 0 <a<min(m+ 1/p, 2). Then the following
conditions are equivalent:

i) If=L?fl,=0mn""),
(il) [f=BEfl,=0n""?),
(iii) [ f=Dufl,=0n"""?).

For p= o0 the above conditions are also equivalent to

(iv) |f=Bufl,=0(n"""?).
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